Photovoltaic–Thermoelectric–Thermodynamic Co-Generation

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this chapter, we will describe triple cogeneration technologies for solar conversion. The costs of solar conversion technologies are determined by the efficiency of power conversion, the lifetime and reliability of its components, the cost of the raw materials, potentially including storage, and any fabrication or construction required. Recently, photovoltaics and solar thermal have emerged as viable candidates for low cost power production; they each have losses that vary across the solar spectrum, with realized and theoretical efficiencies that are well below fundamental thermodynamic limits. Thus, it is desirable to split the solar spectrum to utilize both technologies in parallel over their respective optimal wavelength ranges. This chapter will present promising triple co-generation solutions that have been developed and implemented to provide electric power generation by a combination of photovoltaic and thermal generation. In particular, we show that splitting the solar spectrum, and then using high-energy solar photons for photovoltaics and medium-energy solar photons for thermoelectrics with a bottoming Rankine cycle has potential to achieve 50% solar-to-electricity conversion using existing materials. Also, over 50% of the harvested energy goes to thermal storage for generation after sunset, which could enable highly efficient baseload solar electricity and heat generation at all hours of the day.

Cite

CITATION STYLE

APA

Narducci, D., Bermel, P., Lorenzi, B., Wang, N., & Yazawa, K. (2018). Photovoltaic–Thermoelectric–Thermodynamic Co-Generation. In Springer Series in Materials Science (Vol. 268, pp. 117–136). Springer Verlag. https://doi.org/10.1007/978-3-319-76427-6_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free