Forecasting chaotic systems with very low connectivity reservoir computers

111Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We explore the hyperparameter space of reservoir computers used for forecasting of the chaotic Lorenz '63 attractor with Bayesian optimization. We use a new measure of reservoir performance, designed to emphasize learning the global climate of the forecasted system rather than short-Term prediction. We find that optimizing over this measure more quickly excludes reservoirs that fail to reproduce the climate. The results of optimization are surprising: The optimized parameters often specify a reservoir network with very low connectivity. Inspired by this observation, we explore reservoir designs with even simpler structure and find well-performing reservoirs that have zero spectral radius and no recurrence. These simple reservoirs provide counterexamples to widely used heuristics in the field and may be useful for hardware implementations of reservoir computers.

Cite

CITATION STYLE

APA

Griffith, A., Pomerance, A., & Gauthier, D. J. (2019). Forecasting chaotic systems with very low connectivity reservoir computers. Chaos, 29(12). https://doi.org/10.1063/1.5120710

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free