Photocatalytic hydrogen production through ethanol photo-reforming using Na2Ti3O7 whiskers increases if the sodium titanate is decorated with well-known metallic catalysts such as Ni and Pt. Whereas wet impregnation with nickel gives only a slight increase in the activity, photodeposition of Pt increased the H2 production by more than one order of magnitude. Through the combination of both co-catalysts (Ni and Pt) a superior performance in terms of H2 production is further observed. However, hydrogen yield is largely enhanced (almost three-fold), up to 778 μmol·g−1·h−1, if the Pt is photo-deposited on the surface of the catalyst before wet impregnation with Ni species (NTO/Pt/Ni) compared to H2 yield (283 μmol·g−1·h−1) achieved with the catalyst prepared in the reverse order (NTO/Ni/Pt). Structural, morphological, optical, and chemical characterization was carried out in order to correlate physicochemical properties with their photocatalytic activity. The X-ray photoelectron spectroscopy (XPS) results show a higher concentration of Pt2+ species if this metallic layer is under the nickel oxide layer. Moreover, X-ray diffraction patterns (XRD) show that Na2Ti3O7 surface is modified for both metal decoration processes.
CITATION STYLE
Garayrodríguez, L. F., López, S. M., Andreu, T., Moctezuma, E., Torres Martínez, L. M., & Morante, J. R. (2019). Photocatalytic hydrogen evolution using bi-metallic (Ni/pt) na2ti3o7 whiskers: Effect of the deposition order. Catalysts, 9(3). https://doi.org/10.3390/catal9030285
Mendeley helps you to discover research relevant for your work.