Teletraffic analysis of a mobile crowdsensing system: The pedestrian-to-vehicle scenario

0Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Crowdsensing systems are developed in order to use the computational and communication capabilities of registered users to monitor specific variables and phenomena in an opportunistic manner. As such, the Quality of Experience is not easily attained since these systems heavily rely on the user’s behavior and willingness to cooperate whenever an event with certain interest needs to be monitored. In this work, we analyze the data acquisition phase, where pedestrians opportunistically transmit to vehicles to further disseminate it in the city according to their trajectory. This highly dynamic environment (sensors and data sinks are mobile, and the number of users varies according to the region and time) poses many challenges for properly operating a crowdsensing system. We first study the statistical properties of vehicular traffic in different regions of Luxembourg City where pedestrians share their computational resources and send data to passing cars. Then we propose an Erlang distribution to model the vehicles’ dwelling times and develop a Markov chain accordingly. We model the system using two different queues: we use a single server queue to model the vehicle traffic, while we use an infinite server queue system to model the pedestrian traffic.

Cite

CITATION STYLE

APA

Miguel-Santiago, D., Rivero-Angeles, M. E., Garay-Jiménez, L. I., Orea-Flores, I. Y., & Tovar-Corona, B. (2022). Teletraffic analysis of a mobile crowdsensing system: The pedestrian-to-vehicle scenario. International Journal of Distributed Sensor Networks, 18(11). https://doi.org/10.1177/15501329221133291

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free