Higher temperatures due to climate change are causing greater sugar production in grapes and more alcoholic wines. The use of glucose oxidase (GOX) and catalase (CAT) in grape must is a biotechnological green strategy to produce reduced-alcohol wines. GOX and CAT were effectively co-immobilized by sol-gel entrapment in silica-calcium-alginate hydrogel capsules. The optimal co-immobilization conditions were achieved at a concentration of the colloidal silica, sodium silicate and sodium alginate of 7.38%, 0.49% and 1.51%, respectively, at pH 6.57. The formation of a porous silica-calcium-alginate structure was confirmed by environmental scanning electron microscopy and the elemental analysis of the hydrogel by X-ray spectroscopy. The immobilized GOX showed a Michaelis–Menten kinetic, while the immobilized CAT fits better to an allosteric model. Immobilization also conferred superior GOX activity at low pH and temperature. The capsules showed a good operational stability, as they could be reused for at least 8 cycles. A substantial reduction of 26.3 g/L of glucose was achieved with encapsulated enzymes, which corresponds to a decrease in potential alcoholic strength of must of about 1.5% vol. These results show that co-immobilized GOX and CAT in silica-calcium-alginate hydrogels is a promising strategy to produce reduced-alcohol wines.
CITATION STYLE
del-Bosque, D., Vila-Crespo, J., Ruipérez, V., Fernández-Fernández, E., & Rodríguez-Nogales, J. M. (2023). Silica-Calcium-Alginate Hydrogels for the Co-Immobilization of Glucose Oxidase and Catalase to Reduce the Glucose in Grape Must. Gels, 9(4). https://doi.org/10.3390/gels9040320
Mendeley helps you to discover research relevant for your work.