Aldosterone-induced serum- and glucocorticoid-inducible kinase isoform 1 (SGK1) contributes to the regulation of the epithelial sodium channel (ENaC), the activity of which is critical for long term blood pressure control. Aldosterone-induced SGK1 is thought to enhance ENaC surface expression by phosphorylating Nedd4-2 and thereby preventing ENaC retrieval and degradation. In outside-out membrane patches of Xenopus laevis oocytes heterologously expressing ENaC, amiloride-sensitive ENaC currents were enhanced by phosphatase inhibitors and were dependent on cytosolic Mg2+. This indicates that a kinase is involved in channel regulation. Indeed, recombinant constitutively active SGK1, included in the pipette solution, caused a sustained 2- to 3-fold increase of ENaC currents. Deletion of the C terminus of αENaC largely reduced the stimulatory effect of SGK1, whereas stimulation by SGK1 did not require the presence of the C termini of the β- or γ-subunits. Replacing the serine residue Ser621 of the SGK1 consensus motif in the C terminus of the α-subunit by an alanine specifically abolished the stimulatory effect of SGK. Our findings indicate that SGK1 can stimulate ENaC activity independently of an inhibition of Nedd4-2-mediated channel retrieval. This defines a novel regulatory pathway likely to be relevant for aldosterone-induced stimulation of ENaC in vivo.
CITATION STYLE
Diakov, A., & Korbmacher, C. (2004). A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel’s α-subunit. Journal of Biological Chemistry, 279(37), 38134–38142. https://doi.org/10.1074/jbc.M403260200
Mendeley helps you to discover research relevant for your work.