Addressing many of the major outstanding questions in the fields of microbial evolution and pathogenesis will require analyses of populations of microbial genomes. Although population genomic studies provide the analytical resolution to investigate evolutionary and mechanistic processes at fine spatial and temporal scales—precisely the scales at which these processes occur—microbial population genomic research is currently hindered by the practicalities of obtaining sufficient quantities of the relatively pure microbial genomic DNA necessary for next-generation sequencing. Here we present swga2.0, an optimized and parallelized pipeline to design selective whole genome amplification (SWGA) primer sets. Unlike previous methods, swga2.0 incorporates active and machine learning methods to evaluate the amplification efficacy of individual primers and primer sets. Additionally, swga2.0 optimizes primer set search and evaluation strategies, including parallelization at each stage of the pipeline, to dramatically decrease program runtime. Here we describe the swga2.0 pipeline, including the empirical data used to identify primer and primer set characteristics, that improve amplification performance. Additionally, we evaluate the novel swga2.0 pipeline by designing primer sets that successfully amplify Prevotella melaninogenica, an important component of the lung microbiome in cystic fibrosis patients, from samples dominated by human DNA.
CITATION STYLE
Dwivedi-Yu, J. A., Oppler, Z. J., Mitchell, M. W., Song, Y. S., & Brisson, D. (2023). A fast machine-learning-guided primer design pipeline for selective whole genome amplification. PLoS Computational Biology, 19(4 April). https://doi.org/10.1371/journal.pcbi.1010137
Mendeley helps you to discover research relevant for your work.