Heterologous expression and characterization of an Arabidopsis β-l-arabinopyranosidase and α-d-galactosidases acting on β-l-arabinopyranosyl residues

18Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The major plant sugar l-arabinose (l-Ara) has two different ring forms, l-arabinofuranose (l-Araf) and l-arabinopyranose (l-Arap). Although l-Ara mainly appears in the form of α-l-Araf residues in cell wall components, such as pectic α-1,3:1,5- arabinan, arabinoxylan, and arabinogalactan-proteins (AGPs), lesser amounts of it can also be found as β-l-Arap residues of AGPs. Even though AGPs are known to be rapidly metabolized, the enzymes acting on the β-l-Arap residues remain to be identified. In the present study, four enzymes, which we call β-l-ARAPASE (APSE) and α-GALACTOSIDASE 1 (AGAL1), AGAL2, and AGAL3, are identified as those enzymes that are likely to be responsible for the hydrolysis of the β-l-Arap residues in Arabidopsis thaliana. An Arabidopsis apse-1 mutant showed significant reduction in β-l-arabinopyranosidase activity, and an apse-1 agal3-1 double-mutant exhibited even less activity. The apse-1 and the double-mutants both had more β-l-Arap residues in the cell walls than wild-type plants. Recombinant APSE expressed in the yeast Pichia pastoris specifically hydrolyzed β-l-Arap residues and released l-Ara from gum arabic and larch arabinogalactan. The recombinant AGAL3 also showed weak β-l-arabinopyranosidase activity beside its strong α-galactosidase activity. It appears that the β-l-Arap residues of AGPs are hydrolysed mainly by APSE and partially by AGALs in Arabidopsis.

Cite

CITATION STYLE

APA

Imaizumi, C., Tomatsu, H., Kitazawa, K., Yoshimi, Y., Shibano, S., Kikuchi, K., … Kotake, T. (2017). Heterologous expression and characterization of an Arabidopsis β-l-arabinopyranosidase and α-d-galactosidases acting on β-l-arabinopyranosyl residues. Journal of Experimental Botany, 68(16), 4651–4661. https://doi.org/10.1093/jxb/erx279

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free