From reaction models to influence graphs and back: A theorem

26Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Biologists use diagrams to represent interactions between molecular species, and on the computer, diagrammatic notations are also more and more employed in interactive maps. These diagrams are fundamentally of two types: reaction graphs and activation/inhibition graphs. In this paper, we study the formal relationship between these graphs. We consider systems of biochemical reactions with kinetic expressions, as written in the Systems Biology Markup Language SBML, and interpreted by a system of Ordinary Differential Equations over molecular concentrations. We show that under a general condition of increasing monotonicity of the kinetic expressions, and in absence of both activation and inhibition effects between a pair of molecules, the influence graph inferred from the stoichiometric coefficients of the reactions is equal to the one defined by the signs of the coefficients of the Jacobian matrix. Under these conditions, satisfied by mass action law, Michaelis-Menten and Hill kinetics, the influence graph is thus independent of the precise kinetic expressions, and is computable in linear time in the number of reactions. We apply these results to Kohn's map of the mammalian cell cycle and to the MAPK signalling cascade. Then we propose a syntax for denoting antagonists in reaction rules and generalize our results to this setting. © 2008 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Fages, F., & Soliman, S. (2008). From reaction models to influence graphs and back: A theorem. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5054 LNBI, pp. 90–102). https://doi.org/10.1007/978-3-540-68413-8_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free