Effects of potassium on ammonia transport by medullary thick ascending limb of the rat

49Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Renal ammonium excretion is increased by potassium depletion and reduced by potassium loading. To determine whether changes in potassium concentration would alter ammonia transport in the medullary thick ascending limb (MAL), tubules from rats were perfused in vitro and effects of changes in K concentration within the physiological range (4-24 mM) were evaluated. Increasing K concentration from 4 to 24 mM in perfusate and bath inhibited total ammonia absorption by 50% and reduced the steady-state transepithelial NH4+ concentration gradient. The inhibition of total ammonia absorption was reversible and occurred when K replaced either Na or N-methyl-D-glucamine. Increasing K concentration in the luminal perfusate alone gave similar inhibition of total ammonia absorption. At 1-2 nl/min per mm perfusion rate, increasing K concentration in perfusion and bathing solutions had no significant effect on transepithelial voltage. With either 4 or 24 mM K in perfusate and bath, an increase in luminal perfusion rate markedly increased total ammonia absorption. Thus, both potassium concentration and luminal flow rate are important factors capable of regulating total ammonia transport by the MAL. Changes in systemic potassium balance may influence renal ammonium excretion by affecting NH4+ absorption in the MAL and altering the transfer of ammonia from loops of Henle to medullary collecting ducts.

Cite

CITATION STYLE

APA

Good, D. W. (1987). Effects of potassium on ammonia transport by medullary thick ascending limb of the rat. Journal of Clinical Investigation, 80(5), 1358–1365. https://doi.org/10.1172/JCI113213

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free