The diagnosis of Autism Spectrum Disorder (ASD) in children is commonly accompanied by a diagnosis of sensory processing disorders. Abnormalities are usually reported in multiple sensory processing domains, showing a higher prevalence of unusual responses, particularly to tactile, auditory, and visual stimuli. This article discusses a novel robot-based framework designed to target sensory difficulties faced by children with ASD in a controlled setting. The setup consists of a number of sensory stations, together with two different robotic agents that navigate the stations and interact with the stimuli. These stimuli are designed to resemble real-world scenarios that form a common part of one's everyday experiences. Given the strong interest of children with ASD in technology in general and robots in particular, we attempt to utilize our robotic platform to demonstrate socially acceptable responses to the stimuli in an interactive, pedagogical setting that encourages the child's social, motor, and vocal skills, while providing a diverse sensory experience. A preliminary user study was conducted to evaluate the efficacy of the proposed framework, with a total of 18 participants (5 with ASD and 13 typically developing) between the ages of 4 and 12 years. We derive a measure of social engagement, based on which we evaluate the effectiveness of the robots and sensory stations to identify key design features that can improve social engagement in children.
CITATION STYLE
Javed, H., Burns, R., Jeon, M., Howard, A. M., & Park, C. H. (2020). A Robotic Framework to Facilitate Sensory Experiences for Children with Autism Spectrum Disorder. ACM Transactions on Human-Robot Interaction, 9(1), 1–26. https://doi.org/10.1145/3359613
Mendeley helps you to discover research relevant for your work.