A systematic method for diagnosis of hepatitis disease using machine learning

24Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hepatitis is among the deadliest diseases on the planet. Machine learning approaches can contribute toward diagnosing hepatitis disease based on a few characteristics. On the UCI dataset, authors assessed distinct classifiers' performance in order to develop a systematic strategy for hepatitis disease diagnosis. The classifiers used are support vector machine, logistic regression (LR), K-nearest neighbor, and random forest. The classifiers were employed without class balancing and in conjunction with class balancing using SMOTE strategy. Both studies, classification without class balancing and with class balancing, were compared in terms of different performance parameters. After adopting class balancing, the efficiency of classifiers improved significantly. LR with SMOTE provided the highest level of accuracy (93.18%).

Cite

CITATION STYLE

APA

Sachdeva, R. K., Bathla, P., Rani, P., Solanki, V., & Ahuja, R. (2023). A systematic method for diagnosis of hepatitis disease using machine learning. Innovations in Systems and Software Engineering, 19(1), 71–80. https://doi.org/10.1007/s11334-022-00509-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free