Oxytocin (Oxt), osteocalcin (Ost), and NGF/BDNF have a role in bone homeostasis, reproduction, and cognition. Oxt/Ost is required for muscle repair. We investigated gene response of muscle and the inter-organ communication following cold stress (CS). The mRNA quantity of Ngf, Ost, Oxt, Bdnf, p75ntr, Ntrk1, Gprc6a, Oxtr, Ntrk2, UCP1, and Il-6 genes in bone, brain, soleus (SOL), and tibialis anterior (TA) muscles from adult mice following CS were investigated. The myosin heavy-chain Mhc2b, Mhc1, Mhc2x, and Mhc2a gene expression were investigated. Mice were maintained at T = 23°C or 4°C for 6 h and 5-days (5d). CS mice did not show signs of muscle degeneration. An upregulation of Ucp1 and Ngf genes by 2 and 1.5 folds, respectively, in TA after 6 h CS and Ntrk1 by 4 and 22 folds in SOL muscle after 6 h and 5d CS, respectively, was observed; while after 6 h CS p75Ntr was downregulated in either muscle. Bdnf was unaffected, while after 5d CS Ntrk2 was upregulated in TA. Ost was downregulated in SOL by 0.9-folds at 5d. Following 5d CS, Oxtr and Il-6 genes were upregulated, respectively, by 1 and 1.5 folds in SOL. A downregulation of Mhc2b, respectively, by 0.96 and 0.88-folds after 6 h and 5d CS in SOL and Mhc2a was also downregulated by 0.88-fold after 5d CS in TA. Mhc1 and Mhc2x were not affected. Changes in the expression levels of genes in TA and SOL muscles, bone, and brain following CS were regulated by IL6 and Oxt. CS potentiates the slow-twitch phenotype of SOL which is in line with the metabolic need of this muscle, and the potentiation of the slow-twitch phenotype in TA. Oxt and IL6 coordinate a phenotype-dependent tonic effect of slow-twitch muscle and Oxt regulates the inter-organ interaction between brain and SOL muscle. Muscle tropism is maintained by NGF signaling following CS.
CITATION STYLE
Camerino, C., Conte, E., Carratù, M. R., Fonzino, A., Lograno, M. D., & Tricarico, D. (2019). Oxytocin/Osteocalcin/IL-6 and NGF/BDNF mRNA Levels in Response to Cold Stress Challenge in Mice: Possible Oxytonic Brain-Bone-Muscle-Interaction. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01437
Mendeley helps you to discover research relevant for your work.