The junctional adhesion molecule (JAMs) family belongs to the immunoglobulin subfamily involved in the formation of tight junctions (TJ) in both endothelial and epithelial cells. Aberrant expression of JAM-2 is associated with cancer progression but little work has been carried out in discovering how this affects changes in cell behaviour. The present study aimed to examine the expression of JAM-2 in human colon cancer specimens and cell lines and its role in the development of colon cancer. JAM-2 expression in human colon cancer specimens (normal, n=75; cancer, n=94) and cell lines was analysed using quantitative real-time PCR and conventional RT-PCR. Colon cancer cells were stably transfected with a mammalian expression vector to overexpress JAM-2-Flag. The effect on growth, adhesion and migration following overexpression of JAM-2 was then investigated using in vitro models. TJ function was assessed using a transepithelial resistance assay (TER, with an EVOM voltammeter). JAM-2 was lowly expressed in colon cancer cells such as RKO, HT115. JAM-2 overexpression in RKO cells (RKO-JAM-2) and HT115 cells (HT115-JAM-2) showed retarded adhesion (P<0.05). An in vivo tumour model showed that RKO-JAM-2 had significantly reduced growth (P<0.05), invasion (P<0.05) and migration (P<0.05) as well as in HT115-JAM-2, except on proliferation and migration. Expression of JAM-2 resulted in a significant increase in TER and decrease in permeability of polarized monolayers (P<0.05). Further analysis of JAM-2 transcript levels against clinical aspects demonstrated that the decreasing JAM-2 expression correlated to disease progression, metastasis and poor survival. Taken together, JAM-2 may function as a putative tumour suppressor in the progression and metastasis of colorectal cancer.
CITATION STYLE
Zhao, H., Yu, H., Martin, T. A., Zhang, Y., Chen, G., & Jiang, W. G. (2016). Effect of junctional adhesion molecule-2 expression on cell growth, invasion and migration in human colorectal cancer. International Journal of Oncology, 48(3), 929–936. https://doi.org/10.3892/ijo.2016.3340
Mendeley helps you to discover research relevant for your work.