The changing mass of glaciers on the Tibetan Plateau, 2002-2016, using time-variable gravity from the GRACE satellite mission

7Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The Tibetan Plateau is the largest region of high elevation in the world. The source of water for a number of important rivers, the Himalayan region is vital to the billions of inhabitants of the Asian continent. Over the last fifty years, the climate in the region has warmed more rapidly than anywhere else at the same latitude. Causes and effects, and the geographical details of these alarming warming trends are as yet not fully known. One way of assessing the effects of climate change in this area is to measure the change in glacier volume in the region, but estimates made on the basis of different techniques have not been conclusive to date, and remain difficult to reconcile. We examine the temporal behavior of the mass flux integrated over four distinct groupings of Tibetan glaciers using satellite gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We use a technique known as spatio-spectral localization using spherical Slepian functions to convert global spherical harmonic expansions of the time-dependent geopotential into monthly estimates of mass changes over the Tibetan Plateau. Subsequent reductions are aimed at interpreting this mass change as due to gains or losses in ice mass. We find that (ice) mass has been decreasing on the Tibetan Plateau between 2002 and 2016 but with significant spatial variability throughout the region. Specifically, in the regions of Himalaya, Pamir, Qilian, and Tien Shan, glaciers have been losing ice mass at a rate of -11±3, -1±2, +8±2, and -6±1 Gt/yr, respectively, over the last decade.

Cite

CITATION STYLE

APA

Beveridge, A. K., Harig, C., & Simons, F. J. (2018). The changing mass of glaciers on the Tibetan Plateau, 2002-2016, using time-variable gravity from the GRACE satellite mission. Journal of Geodetic Science, 8(1), 83–97. https://doi.org/10.1515/jogs-2018-0010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free