Background and Objectives: The histological PRO score (I–III) helps to assess the malignant potential of actinic keratoses (AK) by grading the dermal-epidermal junction (DEJ) undulation. Line-field confocal optical coherence tomography (LC-OCT) provides non-invasive real-time PRO score quantification. From LC-OCT imaging data, training of an artificial intelligence (AI), using Convolutional Neural Networks (CNNs) for automated PRO score quantification of AK in vivo may be achieved. Patients and Methods: CNNs were trained to segment LC-OCT images of healthy skin and AK. PRO score models were developed in accordance with the histopathological gold standard and trained on a subset of 237 LC-OCT AK images and tested on 76 images, comparing AI-computed PRO score to the imaging experts’ visual consensus. Results: Significant agreement was found in 57/76 (75%) cases. AI-automated grading correlated best with the visual score for PRO II (84.8%) vs. PRO III (69.2%) vs. PRO I (66.6%). Misinterpretation occurred in 25% of the cases mostly due to shadowing of the DEJ and disruptive features such as hair follicles. Conclusions: The findings suggest that CNNs are helpful for automated PRO score quantification in LC-OCT images. This may provide the clinician with a feasible tool for PRO score assessment in the follow-up of AK.
CITATION STYLE
Thamm, J. R., Daxenberger, F., Viel, T., Gust, C., Eijkenboom, Q., French, L. E., … Schuh, S. (2023). Artificial intelligence-based PRO score assessment in actinic keratoses from LC-OCT imaging using Convolutional Neural Networks. JDDG - Journal of the German Society of Dermatology, 21(11), 1359–1366. https://doi.org/10.1111/ddg.15194
Mendeley helps you to discover research relevant for your work.