A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm

49Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

Abstract

Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca2+ signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K+ channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca2+ influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca2+ entry. Ca2+ induces spinning-like swimming, different from swimming of sperm from other species. The “spinning” mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.

Cite

CITATION STYLE

APA

Fechner, S., Alvarez, L., Bönigk, W., Müller, A., Berger, T. K., Pascal, R., … Kaupp, U. B. (2015). A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm. ELife, 4(DECEMBER2015). https://doi.org/10.7554/eLife.07624

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free