Congenital heart disease (CHD) seriously threatens fetal health. Therefore, prenatal examination to detect deformity is extremely important. The present study aimed to investigate the clinical application value of prenatal ultrasonography combined with molecular biology methods in the diagnosis of fetal CHD. A total of 1,000 pregnant women who had received fetal ultrasonography to examine fetal CHD were enrolled. Ultrasounds were performed for fetal heart examination and diagnosis, mainly on fetal heart position, size, structure and function, and heart valve morphology and function. These indexes were tested again 2 weeks after birth. Blood samples were collected from pregnant women with fetal CHD. Polymerase chain reaction (PCR) and western blotting were performed to detect the association between heart development and T-box transcription factor 1 (TBX1) expression. The results revealed that 10 fetuses had CHD (1%), of which ultrasound detected 9 cases. The specificity and sensitivity of ultrasounds were 100 and 90%, respectively. Of the 9 cases were identified by prenatal ultrasound screening, including 2 cases had endocardial cushion defect, 1 case had pulmonary stenosis combined with right ventricular dysplasia, 1 case had tetralogy of Fallot combined with a cleft lip and palate, 2 cases had ventricular septal defect, 1 case had a single ventricle defect, 1 case had Ebstein and 1 case had a triatrial heart. One case of ventricular septal defect was missed prior to delivery. PCR and western blotting demonstrated that TBX1 expression may be associated with CHD. Therefore, ultrasonography combined with laboratory examinations represent efficient, economic and safe methods for fetal CHD detection. These methods may be significant to improve the rate of CHD diagnosis, and require further investigation.
CITATION STYLE
Guo, B., Xiao, J., Li, L., Wang, S., Wang, L., & Liu, S. (2018). Clinical study of prenatal ultrasonography combined with T-box transcription factor 1 as a biomarker for the diagnosis of congenital heart disease. Molecular Medicine Reports, 17(5), 7346–7350. https://doi.org/10.3892/mmr.2018.8742
Mendeley helps you to discover research relevant for your work.