Constitutively active mutant of the mitogen-activated protein kinase kinase MEK1 induces epithelial dedifferentiation and growth inhibition in Madin-Darby canine kidney-C7 cells

66Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Overexpression of a constitutively active mitogen-activated protein kinase kinase (MAPKK or MEK) induces neuronal differentiation in adrenal pheochromocytoma 12 cells but transformation in fibroblasts. In the present study, we used a constitutively active MAPK/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) mutant to investigate the function of the highly conserved MEK1-ERK2 signaling module in renal epithelial cell differentiation and proliferation. Stable expression of constitutively active MEK1 (CA-MEK1) in epithelial MDCK-C7 cells led to an increased basal and serum-stimulated ERK1 and ERK2 phosphorylation as well as ERK2 activation when compared with mock-transfected cells. In both mock-transfected and CA-MEK1-transfected MDCK-C7 cells, basal and serum-stimulated ERK1 and ERK2 phosphorylation was almost abolished by the synthetic MEK inhibitor PD098059. Increased ERK2 activation due to stable expression of CA-MEK1 in MDCK-C7 cells was associated with epithelial dedifferentiation as shown by both a dramatic alteration in cell morphology and an abolished cytokeratin expression but increased vimentin expression. In addition, we obtained a delayed and reduced serum-stimulated cell proliferation in CA-MEK1-transfected cells (4.6-fold increase in cell number/cm2 after 5 days of serum stimulation) as compared with mock-transfected controls (12.9-fold increase in cell number/cm2 after 5 days). This result was confirmed by flow cytometric DNA analysis showing that stable expression of CA-MEK1 decreased the proportion of MDCK-C7 cells moving from G0/G1 to G2/M as compared with both untransfected and mock- transfected cells. Taken together, our data demonstrate an association of increased basal and serum-stimulated activity of the MEK1-ERK2 signaling module with epithelial dedifferentiation and growth inhibition in MDCK-C7 cells. Thus, the MEK1-ERK2 signaling pathway could act as a negative regulator of epithelial differentiation thereby leading to an attenuation of MDCK-C7 cell proliferation.

Cite

CITATION STYLE

APA

Schramek, H., Feifel, E., Healy, E., & Pollack, V. (1997). Constitutively active mutant of the mitogen-activated protein kinase kinase MEK1 induces epithelial dedifferentiation and growth inhibition in Madin-Darby canine kidney-C7 cells. Journal of Biological Chemistry, 272(17), 11426–11433. https://doi.org/10.1074/jbc.272.17.11426

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free