Minerals are information-rich materials that offer researchers a glimpse into the evolution of planetary bodies. Thus, it is important to extract, analyze, and interpret this abundance of information to improve our understanding of the planetary bodies in our solar system and the role our planet's geosphere played in the origin and evolution of life. Over the past several decades, data-driven efforts in mineralogy have seen a gradual increase. The development and application of data science and analytics methods to mineralogy, while extremely promising, has also been somewhat ad hoc in nature. To systematize and synthesize the direction of these efforts, we introduce the concept of "Mineral Informatics,"which is the next frontier for researchers working with mineral data. In this paper, we present our vision for Mineral Informatics and the X-Informatics underpinnings that led to its conception, as well as the needs, challenges, opportunities, and future directions of the field. The intention of this paper is not to create a new specific field or a sub-field as a separate silo, but to document the needs of researchers studying minerals in various contexts and fields of study, to demonstrate how the systemization and enhanced access to mineralogical data will increase cross- and interdisciplinary studies, and how data science and informatics methods are a key next step in integrative mineralogical studies.
CITATION STYLE
Prabhu, A., Morrison, S. M., Fox, P., Ma, X., Wong, M. L., Williams, J. R., … Hazen, R. M. (2023). What is mineral informatics? American Mineralogist, 108(7), 1242–1257. https://doi.org/10.2138/am-2022-8613
Mendeley helps you to discover research relevant for your work.