Candida Administration Worsens Neutrophil Extracellular Traps in Renal Ischemia Reperfusion Injury Mice: An Impact of Gut Fungi on Acute Kidney Injury

12Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Because of gut-barrier defect (gut-leakage) after acute kidney injury (AKI) and higher abundance of Candida albicans in human intestines compared with mouse guts, Candida administration in renal ischemia reperfusion injury (I/R) mice possibly more closely resemble patients with AKI than non-Candida model. Fungi in feces were detectable only in mice with Candida administration. Candida renal-I/R mice, when compared with non-Candida I/R, demonstrated more profound injuries, including (i) gut-leakage; FITC-dextran assay and serum (1→3)-β-D-glucan (BG), (ii) systemic inflammation (serum cytokines), and (iii) neutrophil extracellular traps (NETs); gene expression of peptidyl arginase 4 (PAD4) and IL-1β, nuclear morphology staining by 4′,6-diamidino-2-phenylindole (DAPI) and co-staining of myeloperoxidase (MPO) with neutrophil elastase (NE) in peripheral blood neutrophils. Although renal excretory function (serum creatinine) and renal histology score were nondifferent between renal-I/R mice with and without Candida, prominent renal NETs (PAD4 and IL-1β expression with MPO and NE co-staining) was demonstrated in Candida renal-I/R mice. Additionally, neutrophil activation by lipopolysaccharide (LPS) plus BG (LPS + BG), when compared with LPS alone, caused (i) NETs formation; dsDNA, DAPI-stained nuclear morphology and MPO with NE co-staining, (ii) inflammatory responses; Spleen tyrosine kinase (Syk) and NFκB expression, and (iii) reduced cell energy status (maximal respiratory capacity using extracellular flux analysis). Also, LPS + BG-activated NETs formation was inhibited by a dectin-1 inhibitor, supporting an impact of BG signaling. In conclusion, Candida-renal I/R demonstrated more prominent serum BG and LPS from gut translocation that increased systemic inflammation and NETs through TLR-4 and dectin-1 activation. The influence of gut fungi in AKI should be concerned.

Cite

CITATION STYLE

APA

Saithong, S., Saisorn, W., Dang, C. P., Visitchanakun, P., Chiewchengchol, D., & Leelahavanichkul, A. (2022). Candida Administration Worsens Neutrophil Extracellular Traps in Renal Ischemia Reperfusion Injury Mice: An Impact of Gut Fungi on Acute Kidney Injury. Journal of Innate Immunity. https://doi.org/10.1159/000521633

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free