Morphological, Mineralogical, and Biochemical Characteristics of Particulate Matter in Three Size Fractions (PM10, PM2.5, and PM1) in the Urban Environment

11Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Air pollution in megacities is increasing due to the dense population index, increasing vehicles, industries, and burning activities that negatively impact human health and climate. There is limited study of air pollution in many megacities of the world including Pakistan. Lahore is a megacity in Pakistan in which the continuous investigation of particulate matter is very important. Therefore, this study investigates particulate matter in three size fractions (PM1, PM2.5, and PM10) in Lahore, a polluted city in south Asia. The particulate matter was collected daily during the winter season of 2019. The average values of PM1, PM2.5, and PM10 were found to be 102.00 ± 64.03, 188.31 ± 49.21, and 279.73 ± 75.04 μg m-3, respectively. Various characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX) were used. FT-IR and XRD techniques identified the minerals and compounds like quartz, peroxides, calcites and vaterite, feldspar group, kaolinite clay minerals, chrysotile, vaterite, illite, hematite, dolomite, calcite, magnesium phosphate, ammonium sulfate, calcium iron oxide, gypsum, vermiculite, CuSO4, and FeSO4. Morphology and elemental composition indicated quartz, iron, biological particles, carbonate, and carbonaceous particles. In addition, various elements like C, O, B, Mg, Si, Ca, Cl, Al, Na, K, Zn, and S were identified. Based on the elemental composition and morphology, different particles along with their percentage were found like carbonaceous- (38%), biogenic- (14%), boron-rich particle- (14%), feldspar- (10%), quartz- (9%), calcium-rich particle- (5%), chlorine-rich particle- (5%), and iron-rich particle (5%)-based. The main sources of the particulate matter included vehicular exertion, biomass consumption, resuspended dust, biological emissions, activities from construction sites, and industrial emissions near the sampling area.

Cite

CITATION STYLE

APA

Ahmad, S., Zeb, B., Ditta, A., Alam, K., Shahid, U., Shah, A. U., … Alqurashi, M. (2023). Morphological, Mineralogical, and Biochemical Characteristics of Particulate Matter in Three Size Fractions (PM10, PM2.5, and PM1) in the Urban Environment. ACS Omega, 8(35), 31661–31674. https://doi.org/10.1021/acsomega.3c01667

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free