Tissue-associated microbial detection in cancer using human sequencing data

9Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cancer is one of the leading causes of morbidity and mortality in the globe. Microbiological infections account for up to 20% of the total global cancer burden. The human microbiota within each organ system is distinct, and their compositional variation and interactions with the human host have been known to attribute detrimental and beneficial effects on tumor progression. With the advent of next generation sequencing (NGS) technologies, data generated from NGS is being used for pathogen detection in cancer. Numerous bioinformatics computational frameworks have been developed to study viral information from host-sequencing data and can be adapted to bacterial studies. This review highlights existing popular computational frameworks that utilize NGS data as input to decipher microbial composition, which output can predict functional compositional differences with clinically relevant applicability in the development of treatment and prevention strategies.

Cite

CITATION STYLE

APA

Rodriguez, R. M., Khadka, V. S., Menor, M., Hernandez, B. Y., & Deng, Y. (2020, December 1). Tissue-associated microbial detection in cancer using human sequencing data. BMC Bioinformatics. BioMed Central Ltd. https://doi.org/10.1186/s12859-020-03831-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free