Thermoresponsive Tetrablock Terpolymers: Effect of Architecture and Composition on Gelling Behavior

31Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

Thermoresponsive gels are an exciting class of materials with many bioapplications, like tissue engineering and drug delivery, but they are also used in formulation industry and 3-D printing. For these applications to be feasible, the gelation temperature must be tailored. Here, it is reported how the gelation temperature is affected and can be tailored by varying the architecture of tetrablock terpolymers. Specifically, 15 copolymers based on penta(ethylene glycol) methyl ether methacrylate (PEGMA, A block), n-butyl methacrylate (BuMA, B block), and the thermoresponsive 2-(dimethylamino)ethyl methacrylate (DMAEMA, C block) were synthesized using group transfer polymerization. Nine tetrablock copolymers of varying architectures, and one triblock copolymer for comparison, with constant molar mass and composition were fabricated. Specifically, the polymers that were investigated are (i) three polymers that contain two A blocks (ABCA, ABAC, and ACAB), (ii) three polymers that contain two B blocks (BACB, BABC, and ABCB), (iii) three polymers that contain two C blocks (CABC, CACB, and ACBC), and (iv) one ABC triblock terpolymer that was synthesized as the control polymer. Then, the five more promising architectures were chosen, and five more polymers with a slightly different composition were synthesized and characterized. Interestingly, it was demonstrated that the block position (architecture) has a significant effect on self-assembly (micelle formation), cloud point, and the rheological and gelling properties of the polymers with two of the tetrablocks showing promise as injectable gels. Specifically, the ACBC terpolymer with 20-30-50 w/w % PEGMA-BuMA-DMAEMA formed gels at at lower concentration but at higher temperatures than the ABC triblock copolymer that was synthesized as a control. On the other hand, the BABC terpolymer with 30-35-45 w/w % PEGMA-BuMA-DMAEMA formed gels at the same concentrations as the ABC triblock control polymer but at lower and more desirable temperatures, slightly below body temperature.

Cite

CITATION STYLE

APA

Constantinou, A. P., Sam-Soon, N. F., Carroll, D. R., & Georgiou, T. K. (2018). Thermoresponsive Tetrablock Terpolymers: Effect of Architecture and Composition on Gelling Behavior. Macromolecules, 51(18), 7019–7031. https://doi.org/10.1021/acs.macromol.8b01251

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free