Recommendation systems alleviate the problem of information overload by helping users find information relevant to their preference. Memory-based recommender systems use correlation-based similarity to measure the common interest among users. The trust between users is often used to address the issues associated with correlation-based similarity measures. However, in most applications, the trust relationships between users are not available. A popular method to extract the implicit trust relationship between users employs prediction accuracy. This method has several problems such as high computational cost and data sparsity. In this paper, addressing the problems associated with prediction accuracy-based trust extraction methods, we proposed a novel trust-based method called AgreeRelTrust. Unlike accuracy-based methods, this method does not require the calculation of initial prediction and the trust relationship is more meaningful. The collective agreements between any two users and their relative activities are fused to obtain the trust relationship. To evaluate the usefulness of our method, we applied it to three public data sets and compared the prediction accuracy with well-known collaborative filtering methods. The experimental results show our method has large improvements over the other methods.
CITATION STYLE
Zahir, A., Yuan, Y., & Moniz, K. (2019). Agreereltrust-a simple implicit trust inference model for memory-based collaborative filtering recommendation systems. Electronics (Switzerland), 8(4). https://doi.org/10.3390/electronics8040427
Mendeley helps you to discover research relevant for your work.