(1) Background: Primary implant stability is vital for successful implant therapy. This study explores the influence of implant shape, length, and diameter on primary stability in different bone qualities. (2) Methods: Three implant systems (two parallel-walled and one tapered) with various lengths and diameters were inserted into polyurethane foam blocks of different densities (35, 25, 15, and 10 PCF) using standard drilling protocols. Primary stability was assessed through insertion torque (IT) and resonance frequency analysis (RFA). Optimal ranges were defined for IT (25 to 50 Ncm) and RFA (ISQ 60 to 80). A comparison of implant groups was conducted to determine adherence to the optimal ranges. (3) Results: Implant macro-design, -length, and -diameter and bone block density significantly influenced IT and RFA. Optimal IT was observed in 8/40 and 9/40 groups for the parallel-walled implants, while the tapered implant achieved optimal IT in 13/40 groups (within a 25–50 Ncm range). Implant diameter strongly impacted primary stability, with sufficient stability achieved in only one-third of cases despite the tapered implant’s superiority. (4) Conclusions: The findings highlight the need to adapt the drilling protocol based on diverse bone qualities in clinical practice. Further investigations should explore the impact of these adapted protocols on implant outcomes.
CITATION STYLE
Stoilov, M., Shafaghi, R., Stark, H., Marder, M., Kraus, D., & Enkling, N. (2023). Influence of Implant Macro-Design, -Length, and -Diameter on Primary Implant Stability Depending on Different Bone Qualities Using Standard Drilling Protocols—An In Vitro Analysis. Journal of Functional Biomaterials, 14(9). https://doi.org/10.3390/jfb14090469
Mendeley helps you to discover research relevant for your work.