Chromodomain helicase DNA-binding protein 8 (CHD8) was identified as a leading autism spectrum disorder (ASD) candidate gene by whole-exome sequencing and subsequent targeted-sequencing studies. De novo loss-of-function mutations were identified in 12 individuals with ASD and zero controls, accounting for a highly significant association. Small interfering RNA-mediated knockdown of CHD8 in human neural progenitor cells followed by RNA sequencing revealed that CHD8 insufficiency results in altered expression of 1715 genes, including both protein-coding and noncoding RNAs. Among the 10 most changed transcripts, 4 (40%) were noncoding RNAs. The transcriptional changes among protein-coding genes involved a highly interconnected network of genes that are enriched in neuronal development and in previously identified ASD candidate genes. These results suggest that CHD8 insufficiency may be a central hub in neuronal development and ASD risk.
CITATION STYLE
Wilkinson, B., Grepo, N., Thompson, B. L., Kim, J., Wang, K., Evgrafov, O. V., … Campbell, D. B. (2015). The autism-associated gene chromodomain helicase DNA-binding protein 8 (CHD8) regulates noncoding RNAs and autism-related genes. Translational Psychiatry, 5(5). https://doi.org/10.1038/tp.2015.62
Mendeley helps you to discover research relevant for your work.