Theoretical methods for vibrational spectroscopy and collision induced dissociation in the gas phase

29Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this chapter we review recent advances in theoretical methods to understand and rationalize anharmonic vibrational spectroscopy (IR-MPD and IR-PD) and collision induced dissociations (CID) in the gas phase. We focused our attention on the application of molecular dynamics-based methods. DFT-based molecular dynamics was shown to be able to reproduce InfraRed Multi-Photon Dissociation (IR-MPD) and InfraRed Pre-Dissociation (IR-PD) action spectroscopy experiments, and help assign the vibrational bands, taking into account finite temperature, conformational dynamics, and various anharmonicities. Crucial examples of dynamical vibrational spectroscopy are given on the protonated AlanH+ series (related to IR-MPD in the 800-4,000 cm-1 domain), ionic clusters (related to IR-PD in the 3,000—4,000 cm-1 region), and neutral peptides (related to IR-MPD in the far-IR). We give examples from simple (e.g., cationized urea) to more complex (e.g., peptides and carbohydrates) molecular systems where molecular dynamics was particularly suited to understanding CID experiments.

Cite

CITATION STYLE

APA

Gaigeot, M. P., & Spezia, R. (2015). Theoretical methods for vibrational spectroscopy and collision induced dissociation in the gas phase. Topics in Current Chemistry, 364, 99–151. https://doi.org/10.1007/128_2014_620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free