The significant roles of microRNAs (miRNAs) in the pathogenesis of myasthenia gravis (MG) have been observed in numerous previous studies. The impact of miRNA clusters on immunity has been demonstrated in previous years; however, the regulation of miRNA clusters in MG remains to be elucidated. In the present study, 245 MG risk genes were collected and 99 MG risk pathways enriched by these genes were identified. A catalog of 126 MG risk miRNAs was then created; the MG risk miRNAs were located on each chromosome and a miRNA cluster was defined as a number of miRNAs with a relative distance of <6 kb on the same sub-band, same band, same region and same chromosome. Furthermore, enrichment analyses were performed using the target genes of the MG risk miRNA clusters, and a number of risk pathways of each miRNA clusters were identified. As a result, 15 significant miRNA clusters associated with MG were identified. Additionally, the most significant pathways of the miRNA clusters were identified to be enriched on chromosomes 9, 19 and 22, characterized by immunity, infection and carcinoma, suggesting that the mechanism of MG may be associated with certain abnormalities of miRNA clusters on chromosomes 9, 19 and 22. The present study provides novel insight into a global pathway view of miRNA clusters in the pathogenesis of MG.
CITATION STYLE
Bo, C., Wang, J., Zhang, H., Cao, Y., Lu, X., Wang, T., … Wang, L. (2019). Global pathway view analysis of microRNA clusters in myasthenia gravis. Molecular Medicine Reports, 19(3), 2350–2360. https://doi.org/10.3892/mmr.2019.9845
Mendeley helps you to discover research relevant for your work.