The P gene of paramyxoviruses is unique in producing not only P but also "accessory" C and/or V proteins. Successful generation of C- or V-deficient recombinant viruses using a reverse genetics technique has been revealing their importance in viral pathogenesis as well as replication. As for Sendai virus (SeV), the C proteins, a nested set of four polypeptides C', C, Y1, and Y2, have been shown to exert multiple functions in escaping from the host innate immunity, inhibiting virus-induced apoptosis, promoting virus assembly and budding, and regulating viral RNA synthesis. In this study, we subjected the 4C(-) recombinant lacking expression of all four C proteins to serial passages through eggs, and found the rapid emergence of a C-recovered revertant virus. Unlike the SeV strains or the recombinants reported previously or tested in this study, this was caused by an exceptionally quick accumulation of U-to-C transitions in a limited region of the 4C(-) genome causing recovery of the C protein expression. These results suggest that a lack of C proteins could lead unexpectedly to strong selective pressures, and that the C proteins might play more critical roles in SeV replication than ever reported. © 2012 Yoshida et al.
CITATION STYLE
Yoshida, A., Sakaguchi, T., & Irie, T. (2012). Passage of a Sendai Virus Recombinant in Embryonated Chicken Eggs Leads to Markedly Rapid Accumulation of U-to-C Transitions in a Limited Region of the Viral Genome. PLoS ONE, 7(11). https://doi.org/10.1371/journal.pone.0049968
Mendeley helps you to discover research relevant for your work.