A topological data analysis based classification method for multiple measurements

14Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Machine learning models for repeated measurements are limited. Using topological data analysis (TDA), we present a classifier for repeated measurements which samples from the data space and builds a network graph based on the data topology. A machine learning model with cross-validation is then applied for classification. When test this on three case studies, accuracy exceeds an alternative support vector machine (SVM) voting model in most situations tested, with additional benefits such as reporting data subsets with high purity along with feature values. Results: For 100 examples of 3 different tree species, the model reached 80% classification accuracy after 30 datapoints, which was improved to 90% after increased sampling to 400 datapoints. The alternative SVM classifier achieved a maximum accuracy of 68.7%. Using data from 100 examples from each class of 6 different random point processes, the classifier achieved 96.8% accuracy, vastly outperforming the SVM. Using two outcomes in neuron spiking data, the TDA classifier was similarly accurate to the SVM in one case (both converged to 97.8% accuracy), but was outperformed in the other (relative accuracies 79.8% and 92.2%, respectively). Conclusions: This algorithm and software can be beneficial for repeated measurement data common in biological sciences, as both an accurate classifier and a feature selection tool.

Cite

CITATION STYLE

APA

Riihimäki, H., Chachólski, W., Theorell, J., Hillert, J., & Ramanujam, R. (2020). A topological data analysis based classification method for multiple measurements. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-03659-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free