Improved heat exchanger lifecycle prognostic methods for enhanced light water reactor sustainability

1Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

As the licenses of many nuclear power plants in the US and abroad are being extended, accurate knowledge of system and component condition is becoming increasingly important. The US Department of Energy (DOE) has funded a project with the primary goal of developing lifecycle prognostic methods to generate accurate and continuous Remaining Useful Life (RUL) estimates as components transition through unique stages of the component lifecycle. Specific emphasis has been placed on creating and transitioning between three distinct stages of operational availability. These stages correspond to Beginning Of Life (BOL) where little or no operational information is available, early onset operations at various expected and observed stress levels where there is the onset of detectable degradation, and degradation towards the eventual End Of Life (EOL). This paper provides an application overview of a developed lifecycle prognostic approach and applies it to a heat exchanger fouling test bed under accelerated degradation conditions resulting in an increased understanding of system degradation. Bayesian and Bootstrap Aggregation methods are applied to show improvements in RUL predictions over traditional methods that do not utilize these methods, thereby improving the lifecycle prognostic model for the component. The analyses of results from applying these lifecycle prognostic algorithms to a heat exchanger fouling experiment are detailed.

Cite

CITATION STYLE

APA

Welz, Z., Nam, A., Sharp, M., Wesley Hines, J., & Upadhyaya, B. R. (2015). Improved heat exchanger lifecycle prognostic methods for enhanced light water reactor sustainability. International Journal of Prognostics and Health Management, 6. https://doi.org/10.36001/ijphm.2015.v6i3.2283

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free