Pharmacological inhibition of LSD1 activity blocks REST-dependent medulloblastoma cell migration 06 Biological Sciences 0604 Genetics

27Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Medulloblastoma (MB) is the most common malignant brain tumor in children. Current problems in the clinic include metastasis, recurrence, and treatment-related sequelae that highlight the need for targeted therapies. Epigenetic perturbations are an established hallmark of human MB and expression of Lysine Specific Demethylase 1 (LSD1) is elevated in MBs compared to normal tissue, suggesting that LSD1 inhibitors may have efficacy against human MB tumors. Methods: Expression of LSD1 was examined across a publicly-available database and correlated with patient outcomes. Sonic Hedgehog (SHH) MB samples were clustered based on expression of LSD1 and LSD1-associated RE-1 silencing transcription factor (REST) target genes as well as genes involved in metastasis. Resulting clusters were examined for patient outcomes associated with LSD1 and REST expression. Human SHH MB cell lines were transduced with a REST-transgene to create isogenic cell pairs. In vitro viability and cell migration assays were used to examine the effect of LSD1 knockdown or inhibition on these parameters. Results: We demonstrate that subsets of SHH MB tumors have elevated LSD1 expression coincident with increased expression of its deubiquitylase, USP7, and REST. Patients with co-elevation of USP7, REST, and LSD1 have poorer outcomes compared to those with lower expression of these genes. In SHH MB cell lines, REST elevation increased cell growth and LSD1 protein levels. Surprisingly, while genetic loss of LSD1 reduced cell viability, pharmacological targeting of its activity using LSD1 inhibitors did not affect cell viability. However, a reduction in REST-dependent cell migration was seen in wound healing, suggesting that REST-LSD1 interaction regulates cell migration. Ingenuity pathway analyses validated these findings and identified Hypoxia Inducible Factor 1 alpha (HIF1A) as a potential target. In line with this, ectopic expression of HIF1A rescued the loss of migration seen following LSD1 inhibition. Conclusions: A subset of SHH patients display increased levels of LSD1 and REST, which is associated with poor outcomes. REST elevation in MB in conjunction with elevated LSD1 promotes MB cell migration. LSD1 inhibition blocks REST-dependent cell migration of MB cells in a HIF1A-dependent manner.

Cite

CITATION STYLE

APA

Callegari, K., Maegawa, S., Bravo-Alegria, J., & Gopalakrishnan, V. (2018). Pharmacological inhibition of LSD1 activity blocks REST-dependent medulloblastoma cell migration 06 Biological Sciences 0604 Genetics. Cell Communication and Signaling, 16(1). https://doi.org/10.1186/s12964-018-0275-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free