Carbon nanotubes and graphene nanoribbons: Potentials for nanoscale electrical interconnects

28Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

Carbon allotropes have generated much interest among different scientific communities due to their peculiar properties and potential applications in a variety of fields. Carbon nanotubes and more recently graphene have shown very interesting electrical properties along with the possibility of being grown and/or deposited at a desired location. In this Review, we will focus our attention on carbon-based nanostructures (in particular, carbon nanotubes and graphene nanoribbons) which could play an important role in the technological quest to replace copper/low-k for interconnect applications. We will provide the reader with a number of possible architectures, including single-wall as well as multi-wall carbon nanotubes, arranged in horizontal and vertical arrays, regarded as individual objects as well as bundles. Modification of their functional properties in order to fulfill interconnect applications requirements are also presented. Then, in the second part of the Review, recently discovered graphene and in particular graphene and few-graphene layers nanoribbons are introduced. Different architectures involving nanostructured carbon are presented and discussed in light of interconnect application in terms of length, chirality, edge configuration and more.

Cite

CITATION STYLE

APA

Soldano, C., Talapatra, S., & Kar, S. (2013, August 28). Carbon nanotubes and graphene nanoribbons: Potentials for nanoscale electrical interconnects. Electronics (Switzerland). MDPI AG. https://doi.org/10.3390/electronics2030280

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free