RecoMIA-recommendations for marine image annotation: Lessons learned and future directions

46Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

Abstract

Marine imaging is transforming into a sensor technology applied for high throughput sampling. In the context of habitat mapping, imaging establishes thereby an important bridge technology regarding the spatial resolution and information content between physical sampling gear (e.g., box corer, multi corer) on the one end and hydro-acoustic sensors on the other end of the spectrum of sampling methods. In contrast to other scientific imaging domains, such as digital pathology, there are no protocols and reports available that guide users (often referred to as observers) in the non-trivial process of assigning semantic categories to whole images, regions, or objects of interest (OOI), which is referred to as annotation. These protocols are crucial to facilitate image analysis as a robust scientific method. In this article we will review the past observations in manual Marine Image Annotations (MIA) and provide (a) a guideline for collecting manual annotations, (b) definitions for annotation quality, and (c) a statistical framework to analyze the performance of human expert annotations and to compare those to computational approaches.

Cite

CITATION STYLE

APA

Schoening, T., Osterloff, J., & Nattkemper, T. W. (2016). RecoMIA-recommendations for marine image annotation: Lessons learned and future directions. Frontiers in Marine Science. Frontiers Media S. A. https://doi.org/10.3389/fmars.2016.00059

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free