Trade-offs (And constraints) in organismal biology

70Citations
Citations of this article
145Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Trade-offs and constraints are inherent to life, and studies of these phenomena play a central role in both organismal and evolutionary biology. Trade-offs can be defined, categorized, and studied in at least six, not mutually exclusive, ways. (1) Allocation constraints are caused by a limited resource (e.g., energy, time, space, essential nutrients), such that increasing allocation to one component necessarily requires a decrease in another (if only two components are involved, this is referred to as the Y-model, e.g., energy devoted to size versus number of offspring). (2) Functional conflicts occur when features that enhance performance of one task decrease performance of another (e.g., relative lengths of in-levers and out-levers, force-velocity trade-offs related to muscle fiber type com-position). (3) Shared biochemical pathways, often involving integrator molecules (e.g., hormones, neurotransmitters, transcription factors), can simultaneously affect multiple traits, with some effects being beneficial for one or more components of Darwinian fitness (e.g., survival, age at first reproduction, fecundity) and others detrimental. (4) Antagonistic pleiotropy describes genetic variants that increase one component of fitness (or a lower-level trait) while simultaneously decreasing another. (5) Ecological circumstances (or selective regime) may impose trade-offs, such as when foraging behavior increases energy availability yet also decreases survival. (6) Sexual selection may lead to the elaboration of (usually male) secondary sexual characters that improve mating success but handicap survival and/or impose energetic costs that reduce other fitness components. Empirical studies of trade-offs often search for negative correlations between two traits that are the expected outcomes of the trade-offs, but this will generally be inadequate if more than two traits are involved and especially for complex physiological networks of interacting traits. Moreover, trade-offs often occur only in populations that are experiencing harsh environmental conditions or energetic challenges at the extremes of phenotypic distributions, such as among individuals or species that have exceptional athletic abilities. Trade-offs may be (par-tially) circumvented through various compensatory mechanisms, depending on the timescale involved, ranging from acute to evolutionary. Going forward, a pluralistic view of trade-offs and constraints, combined with integrative analyses that cross levels of biological organization and traditional boundaries among disciplines, will enhance the study of evolutionary organismal biology.

Cite

CITATION STYLE

APA

Garland, T., Downs, C. J., & Ives, A. R. (2022). Trade-offs (And constraints) in organismal biology. Physiological and Biochemical Zoology, 95(1), 82–112. https://doi.org/10.1086/717897

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free