The problem of medical images of cervix epithelium classification for express diagnostics is considered…The following states of cervix epithelium are to be recognized and classified: normal state - columnar epithelium; squamous epithelium (normal state); metaplasia-benign changes of cervix uterus epithelium; CIN1-displasia of light degree, CIN 2-displasia of middle degree, CIN 3-displasia of high degree- intra-epithelium cancer: For its solution the application of fuzzy neural network (FNN NEFClass M) is suggested. The application of FNN is grounded by its following properties: it may work with fuzzy and qualitative information; it has accelerated convergence as compared with crisp classification methods; it enables to attain better classification accuracy than conventional classifiers. The structure of FNN NEFClass and its model description are presented. Training algorithm stochastic gradient descent for membership functions of fuzzy sets is considered and implemented. Data set of medical images of cervix epithelium which was obtained by special device colposcope is described and some images are presented. The experimental investigations of FNN NEFClass application for medical images recognition on real data are carried out, the results are presented. The comparison with NN Back Propagation, RBF NN and cascade RBF NN was made and estimation of efficiency of the suggested approach was performed. The problem of reduction of features number in classification tasks using principal component method (PCM) method is considered and implemented.
CITATION STYLE
Zaychenko, Y., & Agh Ghamish Ovi Nafas, A. (2019). Medical Images Classification and Diagnostics Using Fuzzy Neural Networks. American Journal of Neural Networks and Applications, 5(2), 45. https://doi.org/10.11648/j.ajnna.20190502.11
Mendeley helps you to discover research relevant for your work.