Titanium-based implants are widely used in modern clinical practice; however, complications associated withimplants due to bacterial-induced infections arise frequently, caused mainly by staphylococci, streptococci, Pseudomonas spp. and coliform bacteria. Although increased hydrophilicity of the biomaterial surface is known to bebeneficial in minimizing the biofilm, quantitative analyses between the actual implant parameters and bacterial development are scarce. Here, the results of in vitro studies of Staphylococcus aureus and Staphylococcus epidermidis proliferation on uncoated and coated titanium materials with different roughness, porosity, topology, and hydrophilicity are shown. The same materials have been tested in parallel with respect to human osteogenic andendothelial cell adhesion, proliferation, and differentiation. The experimental data processed by meta-analysis are indicating the possibility of decreasing the biofilm formation by 80-90% for flat substrates versus untreated plasmasprayed porous titanium and by 65-95% for other porous titanium coatings. It is also shown that optimized surfaces would lead to 10-50% enhanced cell proliferation and differentiation versus reference porous titanium coatings. This presents an opportunity to manufacture implants with intrinsic reduced infection risk, yet without the additional use of antibacterial substances. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CITATION STYLE
Gasik, M., Mellaert, L. V., Pierron, D., Braem, A., Hofmans, D., Waelheyns, E. D., … Vleugels, J. (2012). Reduction of biofilm infection risks and promotion of osteointegration for optimized surfaces of titanium implants. Advanced Healthcare Materials, 1(1), 117–127. https://doi.org/10.1002/adhm.201100006
Mendeley helps you to discover research relevant for your work.