Modelling of the proline (1) catalyzed aldol reaction (with acetone 2) in the presence of an explicit molecule of dimethyl sulfoxide (DMSO) (3) has showed that 3 is a major player in the aldol reaction as it plays a double role. Through strong interactions with 1 and acetone 2, it leads to a significant increase of energy barriers at transition states (TS) for the lowest energy conformer 1a of proline. Just the opposite holds for the higher energy conformer 1b. Both the ‘inhibitor’ and ‘catalyst’ mode of activity of DMSO eliminates 1a as a catalyst at the very beginning of the process and pro-motes the chemical reactivity, hence catalytic ability of 1b. Modelling using a Molecular-Wide and Electron Density-based concept of Chemical Bonding (MOWED-CB) and the Reaction Energy Pro-file–Fragment Attributed Molecular System Energy Change (REP-FAMSEC) protocol has shown that, due to strong intermolecular interactions, the HN-C-COOH (of 1), CO (of 2), and SO (of 3) fragments drive a chemical change throughout the catalytic reaction. We strongly advocate exploring the pre-organization of molecules from initially formed complexes, through local minima to the best structures suited for a catalytic process. In this regard, a unique combination of MOWED-CB with REP-FAMSEC provides an invaluable insight on the potential success of a catalytic process, or reaction mechanism in general. The protocol reported herein is suitable for explaining classical reaction energy profiles computed for many synthetic processes.
CITATION STYLE
Cukrowski, I., Dhimba, G., & Riley, D. L. (2022). A Molecular-Wide and Electron Density-Based Approach in Exploring Chemical Reactivity and Explicit Dimethyl Sulfoxide (DMSO) Solvent Molecule Effects in the Proline Catalyzed Aldol Reaction. Molecules, 27(3). https://doi.org/10.3390/molecules27030962
Mendeley helps you to discover research relevant for your work.