Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study

87Citations
Citations of this article
107Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725 participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a non-overlapping set of 760 participants. Results: Genome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array. Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models. All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A Bonferroni-corrected p value lower than 1.08 × 10−7 was considered statistically significant. Five CpG sites annotated to genes including DHCR24, CPT1A, ABCG1, and SREBF1 were identified and replicated. Four CpG sites were associated with triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1 (cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584). No significant associations were observed with LDL-C or total cholesterol. Conclusions: We report an association of HDL-C levels with methylation of a CpG site near DHCR24, a protein-coding gene involved in cholesterol biosynthesis, which has previously been reported to be associated with other metabolic traits. Furthermore, we confirmed previously reported associations of methylation of CpG sites within CPT1A, ABCG1, and SREBF1 and lipids. These results provide insight in the mechanisms that are involved in lipid metabolism.

Cite

CITATION STYLE

APA

Braun, K. V. E., Dhana, K., de Vries, P. S., Voortman, T., van Meurs, J. B. J., Uitterlinden, A. G., … Dehghan, A. (2017). Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clinical Epigenetics, 9(1). https://doi.org/10.1186/s13148-016-0304-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free