Ball Detection Using Deep Learning Implemented on an Educational Robot Based on Raspberry Pi

2Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

RoboCupJunior is a project-oriented competition for primary and secondary school students that promotes robotics, computer science and programing. Through real life scenarios, students are encouraged to engage in robotics in order to help people. One of the popular categories is Rescue Line, in which an autonomous robot has to find and rescue victims. The victim is in the shape of a silver ball that reflects light and is electrically conductive. The robot should find the victim and place it in the evacuation zone. Teams mostly detect victims (balls) using random walk or distant sensors. In this preliminary study, we explored the possibility of using a camera, Hough transform (HT) and deep learning methods for finding and locating balls with the educational mobile robot Fischertechnik with Raspberry Pi (RPi). We trained, tested and validated the performance of different algorithms (convolutional neural networks for object detection and U-NET architecture for sematic segmentation) on a handmade dataset made of images of balls in different light conditions and surroundings. RESNET50 was the most accurate, and MOBILENET_V3_LARGE_320 was the fastest object detection method, while EFFICIENTNET-B0 proved to be the most accurate, and MOBILENET_V2 was the fastest semantic segmentation method on the RPi. HT was by far the fastest method, but produced significantly worse results. These methods were then implemented on a robot and tested in a simplified environment (one silver ball with white surroundings and different light conditions) where HT had the best ratio of speed and accuracy (4.71 s, DICE 0.7989, IoU 0.6651). The results show that microcomputers without GPUs are still too weak for complicated deep learning algorithms in real-time situations, although these algorithms show much higher accuracy in complicated environment situations.

Cite

CITATION STYLE

APA

Keča, D., Kunović, I., Matić, J., & Sovic Krzic, A. (2023). Ball Detection Using Deep Learning Implemented on an Educational Robot Based on Raspberry Pi. Sensors, 23(8). https://doi.org/10.3390/s23084071

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free