Silicon is a common material for photonics due to its favorable optical properties in the telecom and mid-wave IR bands, as well as compatibility with a wide range of complementary metal–oxide semiconductor (CMOS) foundry processes. Crystalline inversion symmetry precludes silicon from natively exhibiting second-order nonlinear optical processes. In this work, we build on recent works in silicon photonics that break this material symmetry using large bias fields, thereby enabling χ (2) interactions. Using this approach, we demonstrate both second-harmonic generation (with a normalized efficiency of 0.20%W −1 cm −2 ) and, to our knowledge, the first degenerate χ (2) optical parametric amplifier (with an estimated normalized gain of 0.6dBW −1/2 cm −1 ) using silicon-on-insulator waveguides fabricated in a CMOS-compatible commercial foundry. We expect this technology to enable the integration of novel nonlinear optical devices such as optical parametric amplifiers, oscillators, and frequency converters into large-scale, hybrid photonic–electronic systems by leveraging the extensive ecosystem of CMOS fabrication.
CITATION STYLE
Heydari, D., Cătuneanu, M., Ng, E., Gray, D. J., Hamerly, R., Mishra, J., … Mabuchi, H. (2023). Degenerate optical parametric amplification in CMOS silicon. Optica, 10(4), 430. https://doi.org/10.1364/optica.478702
Mendeley helps you to discover research relevant for your work.