Emerging evidence suggests that the hypocretinergic system is involved in addictive behavior. In this study, we investigated the role of these hypothalamic neuropeptides in anxiety-like responses of nicotine and stress-induced reinstatement of nicotine-seeking behavior. Acute nicotine (0.8 mg/kg, s.c.) induced anxiogenic-like effects in the elevated plus-maze and activated the paraventricular nucleus of the hypothalamus (PVN) as revealed by c-Fos expression. Pretreatment with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 or preprohypocretin gene deletion blocked both nicotine effects. In the PVN, SB334867 also prevented the activation of corticotrophin releasing factor (CRF) and arginine-vasopressin (AVP) neurons, which expressed Hcrtr-1. In addition, an increase of the percentage of c-Fos-positive hypocretin cells in the perifornical and dorsomedial hypothalamic (PFA/DMH) areas was found after nicotine (0.8 mg/kg, s.c.) administration. Intracerebroventricular infusion of hypocretin-1 (Hcrt-1) (0.75 nmol/1 μl) or footshock stress reinstated a previously extinguished nicotine-seeking behavior. The effects of Hcrt-1 were blocked by SB334867, but not by the CRF1 receptor antagonist antalarmin. Moreover, SB334867 did not block CRF-dependent footshock-induced reinstatement of nicotine-seeking while antalarmin was effective in preventing this nicotine motivational response. Therefore, the Hcrt system interacts with CRF and AVP neurons in the PVN and modulates the anxiogenic-like effects of nicotine whereas Hcrt and CRF play a different role in the reinstatement of nicotine-seeking. Indeed, Hcrt-1 reinstates nicotine-seeking through a mechanism independent of CRF activation whereas CRF mediates the reinstatement induced by stress. Copyright © 2010 the authors.
CITATION STYLE
Plaza-Zabala, A., Martín-García, E., De Lecea, L., Maldonado, R., & Berrendero, F. (2010). Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. Journal of Neuroscience, 30(6), 2300–2310. https://doi.org/10.1523/JNEUROSCI.5724-09.2010
Mendeley helps you to discover research relevant for your work.