Streptomycetes exhibit a complex morphological differentiation. After a submerged mycelium has been formed, filaments grow into the air to septate into spores. A class of eight hydrophobic secreted proteins, ChpA-H, was shown to be instrumental in the development of Streptomyces coelicolor. Mature forms of ChpD-H are up to 63 amino acids in length, and those of ChpA-C are larger (±225 amino acids). ChpA-C contain two domains similar to ChpD-H, as well as a cell-wall sorting signal. The chp genes were expressed in submerged mycelium (chpE and chpH) as well as in aerial hyphae (chpA-H). Formation of aerial hyphae was strongly affected in a strain in which six chp genes were deleted (ΔchpABCDEH). A mixture of ChpD-H purified from cell walls of aerial hyphae complemented the ΔchpABCDEH strain extracellularly, and it accelerated development in the wild-type strain. The protein mixture was highly surface active, and it self-assembled into amyloid-like fibrils at the water-air interface. The fibrils resembled those of a surface layer of aerial hyphae. We thus conclude that the amyloid-like fibrils of ChpD-H lower the water surface tension to allow aerial growth and cover aerial structures, rendering them hydrophobic. ChpA-C possibly bind ChpD-H to the cell wall.
CITATION STYLE
Claessen, D., Rink, R., De Jong, W., Siebring, J., De Vreugd, P., Boersma, F. G. H., … Wösten, H. A. B. (2003). A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes and Development, 17(14), 1714–1726. https://doi.org/10.1101/gad.264303
Mendeley helps you to discover research relevant for your work.