In graphs with rich texts, incorporating textual information with structural information would benefit constructing expressive graph embeddings. Among various graph embedding models, random walk (RW)-based is one of the most popular and successful groups. However, it is challenged by two issues when applied on graphs with rich texts: (i) sampling efficiency: deriving from the training objective of RW-based models (e.g., DeepWalk and node2vec), we show that RW-based models are likely to generate large amounts of redundant training samples due to three main drawbacks. (ii) text utilization: these models have difficulty in dealing with zero-shot scenarios where graph embedding models have to infer graph structures directly from texts. To solve these problems, we propose a novel framework, namely Text-driven Graph Embedding with Pairs Sampling (TGE-PS). TGE-PS uses Pairs Sampling (PS) to improve the sampling strategy of RW, being able to reduce ∼99% training samples while preserving competitive performance. TGE-PS uses Text-driven Graph Embedding (TGE), an inductive graph embedding approach, to generate node embeddings from texts. Since each node contains rich texts, TGE is able to generate high-quality embeddings and provide reasonable predictions on existence of links to unseen nodes. We evaluate TGE-PS on several real-world datasets, and experiment results demonstrate that TGE-PS produces state-of-the-art results on both traditional and zero-shot link prediction tasks.
CITATION STYLE
Chen, L., Zhang, W., Qu, Y., Chen, K., Yu, Y., Wang, Z., & Zhang, S. (2019). Sampled in pairs and driven by text: A new graph embedding framework. In The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 (pp. 2644–2651). Association for Computing Machinery, Inc. https://doi.org/10.1145/3308558.3313520
Mendeley helps you to discover research relevant for your work.