An accurate positioning and attitude computation of vehicles, robots, or even persons is of the utmost importance and critical for the success of many operations in multiple commercial, industrial, and research areas. However, most of these positioning and attitude systems rely on inertial measurement units that must be periodically recalibrated and have a high cost. In the present work, the design of a real-time positioning and attitude system using three positioning sensors based on the GNSS-RTK technology is presented. This kind of system does not need recalibration, and it allows one to define the attitude of a solid by only computing the position of the system in the global reference system and the three angles that the relative positions of the GNSS antennas define with respect to the principal axes of the solid. The position and attitude can be computed in real time for both static and dynamic scenarios. The only limitation of the system is that the antennas need to be in open air to work at full performance and accuracy. All the design phases are covered in the prototype construction: requirement definition, hardware selection, software design, assembly, and validation. The feasibility and performance of the system were tested in both static and dynamic real scenarios.
CITATION STYLE
Olivart I Llop, J. M., Moreno-Salinas, D., & Sánchez, J. (2020). Full real-time positioning and attitude system based on gnss-rtk technology. Sustainability (Switzerland), 12(23), 1–21. https://doi.org/10.3390/su12239796
Mendeley helps you to discover research relevant for your work.