Leptoquark mechanism of neutrino masses within the grand unification framework

54Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We demonstrate the viability of the one-loop neutrino mass mechanism within the framework of grand unification when the loop particles comprise scalar leptoquarks (LQs) and quarks of the matching electric charge. This mechanism can be implemented in both supersymmetric and non-supersymmetric models and requires the presence of at least one LQ pair. The appropriate pairs for the neutrino mass generation via the up-type and down-type quark loops are S3–R2 and S1,3–R~ 2, respectively. We consider two distinct regimes for the LQ masses in our analysis. The first regime calls for very heavy LQs in the loop. It can be naturally realized with the S1,3–R~ 2 scenarios when the LQ masses are roughly between 10 12 and 5 × 10 13 GeV. These lower and upper bounds originate from experimental limits on partial proton decay lifetimes and perturbativity constraints, respectively. Second regime corresponds to the collider accessible LQs in the neutrino mass loop. That option is viable for the S3–R~ 2 scenario in the models of unification that we discuss. If one furthermore assumes the presence of the type II see-saw mechanism there is an additional contribution from the S3–R2 scenario that needs to be taken into account beside the type II see-saw contribution itself. We provide a complete list of renormalizable operators that yield necessary mixing of all aforementioned LQ pairs using the language of SU(5). We furthermore discuss several possible embeddings of this mechanism in SU(5) and SO(10) gauge groups.

Cite

CITATION STYLE

APA

Doršner, I., Fajfer, S., & Košnik, N. (2017). Leptoquark mechanism of neutrino masses within the grand unification framework. European Physical Journal C, 77(6). https://doi.org/10.1140/epjc/s10052-017-4987-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free