HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps

127Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, we have identified a protein in Escherichia coli that specifically binds to double-stranded DNA containing a single-stranded gap of one nucleotide. The gap-DNA binding (GDB) protein was purified to apparent homogeneity. The analysis of the amino-terminal sequencing of the GDB protein shows two closely related sequences we identify as the α and β subunits of the HU protein. Furthermore, the GDB protein is not detected in the crude extract of an E. coli double mutant strain hupA hupB that has no functional HU protein. These results led us to identify the GDB protein as the HU protein. HU binds strongly to double-stranded 30-mer oligonucleotides containing a nick or a single-stranded gap of one or two nucleotides. Apparent dissociation constants were measured for these various DNA duplexes using a gel retardation assay. The K(D(app)) values were 8 nM for the 30-mer duplex that contains a nick and 4 and 2 nM for those that contain a 1- or a 2-nucleotide gap, respectively. The affinity of HU for these ligands is at least 100-fold higher than for the same 30-mer DNA duplex without nick or gap. Other single-stranded breaks or gaps, which are intermediate products in the repair of abasic sites after incision by the Fpg, Nth, or Nfo proteins, are also preferentially bound by the HU protein. Due to specific binding to DNA strand breaks, HU may play a role in replication, recombination, and repair.

Cite

CITATION STYLE

APA

Castaing, B., Zelwer, C., Laval, J., & Boiteux, S. (1995). HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. Journal of Biological Chemistry, 270(17), 10291–10296. https://doi.org/10.1074/jbc.270.17.10291

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free