Objective: We sought to investigate various molecular subtypes defined by genomic instability that may be related to early death and recurrence in colon cancer. Methods: We sought to investigate various molecular subtypes defined by instability at microsatellites (MSI), changes in methylation patterns (CpG island methylator phenotype, CIMP) or copy number variation (CNV) in 8 genes. Stage II-III colon cancers (n = 64) were investigated by methylation-specific multiplex ligated probe amplification (MS-MLPA). Correlation of CNV, CIMP and MSI, with mutations in KRAS and BRAFV600E were assessed for overlap in molecular subtypes and early recurrence risk by uni- and multivariate regression. Results: The CIMP phenotype occurred in 34% (22/64) and MSI in 27% (16/60) of the tumors, with noted CIMP/MSI overlap. Among the molecular subtypes, a high CNV phenotype had an associated odds ratio (OR) for recurrence of 3.2 (95% CI 1.1-9.3; P = 0.026). Losses of CACNA1G (OR of 2.9, 95% CI 1.4-6.0; P = 0.001), IGF2 (OR of 4.3, 95% CI 1.1-15.8; P = 0.007), CDKN2A (p16) (OR of 2.0, 95% CI 1.1-3.6; P = 0.024), and RUNX3 (OR of 3.4, 95% CI 1.3-8.7; P = 0.002) were associated with early recurrence, while MSI, CIMP, KRAS or BRAF V600E mutations were not. The CNV was significantly higher in deceased patients (CNV in 6 of 8) compared to survivors (CNV in 3 of 8). Only stage and loss of RUNX3 and CDKN2A were significant in the multivariable risk-model for early recurrence. Conclusions: A high copy number variation phenotype is a strong predictor of early recurrence and death, and may indicate a dose-dependent relationship between genetic instability and outcome. Loss of tumor suppressors RUNX3 and CDKN2A were related to recurrence-risk and warrants further investigation.
CITATION STYLE
Berg, M., Nordgaard, O., Kørner, H., Oltedal, S., Smaaland, R., Søreide, J. A., & Søreide, K. (2015). Molecular subtypes in stage II-III colon cancer defined by genomic instability: Early recurrence-risk associated with a high copy-number variation and loss of RUNX3 and CDKN2A. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0122391
Mendeley helps you to discover research relevant for your work.