Poly(ADP-ribosyl)ation is a post-translational modification that is instantly stimulated by DNA strand breaks creating a unique signal for the modulation of protein functions in DNA repair and cell cycle checkpoint pathways. Here we report that lack of poly(ADP-ribose) synthesis leads to a compromised response to DNA damage. Deficiency in poly(ADP-ribosyl)ation metabolism induces profound cellular sensitivity to DNA-damaging agents, particularly in cells deficient for the protein kinase ataxia telangiectasia mutated (ATM). At the biochemical level, we examined the significance of poly(ADP-ribose) synthesis on the regulation of early DNA damage-induced signaling cascade initiated by ATM. Using potent PARP inhibitors and PARP-1 knock-out cells, we demonstrate a functional interplay between ATM and poly(ADP-ribose) that is important for the phosphorylation of p53, SMC1, and H2AX. For the first time, we demonstrate a functional and physical interaction between the major DSB signaling kinase, ATM and poly(ADP-ribosyl)ation by PARP-1, a key enzyme of chromatin remodeling. This study suggests that poly(ADP-ribose) might serve as a DNA damage sensory molecule that is critical for early DNA damage signaling. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Haince, J. F., Kozlov, S., Dawson, V. L., Dawson, T. M., Hendzel, M. J., Lavin, M. F., & Poirier, G. G. (2007). Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. Journal of Biological Chemistry, 282(22), 16441–16453. https://doi.org/10.1074/jbc.M608406200
Mendeley helps you to discover research relevant for your work.